Will therapy benefit OCD patients? Computers have the answer.

fMRI machine
Patient being prepared for an fMRI. Credit: Ptrump16, Creative Commons.

Obsessive-compulsive disorder, or OCD, is characterized by unwanted, repetitive thoughts and impulsive, ritualistic actions. For example, a common fear among those with OCD is a fear of germs, which results in repetitive hand-washing. While historically OCD has been difficult to treat effectively, in recent years, modifications to cognitive-behavioral therapy have had more success. Cognitive-behavioral therapy is comprised of a series of sessions between a therapist and patient to identify negative thought patterns and symptoms, and address them through discussion, exposure to stress-inducing stimuli, and practice utilizing alternative coping mechanisms to ameliorate anxiety.

While cognitive-behavioral therapy can be effective, it is time-consuming and does not work for everyone. Using functional magnetic resonance imaging (fMRIs), scientists at UCLA trained a computer analysis system to study the brains of individuals with OCD, and determine which individuals were most likely to benefit from cognitive-behavioral therapy. Their study demonstrated that if an OCD patient were to receive a seven-minute fMRI scan, the computer program could predict the success of cognitive-behavioral therapy for that particular patient, at 67-70% accuracy.

For their study, researchers recruited 42 adults with OCD. All of the participants underwent fMRIs at the beginning of the study. Then, half of the participants attended cognitive-behavioral therapy sessions lasting about 90 minutes per session, five days a week for four weeks. At the end, their brains were analyzed with an fMRI again to detect any differences in structure or brain function. The other half of the participants were put on a four-week waitlist. At the end of four weeks, having received no therapy, their brains were scanned to see if there were any differences simply due to time. These participants received cognitive-behavioral therapy treatment after the four-week waiting period.

On the fMRI scans, the researchers were especially interested in studying the regions of the brain and their cellular networks that regulate attention, vision, motor skills, memory, self-evaluation, and the abstract sense of “mind-wandering,” or daydreaming, each of which play a role in development of OCD. They utilized mathematical models and computer learning to map differences between the participant’s brains, and match those results with behavior results of cognitive-behavioral therapy. They found that the computer could suggest which patients would benefit from therapy, regardless of individual symptoms or severity of symptoms.

fMRI brain scan
One of the brain networks studied was the default mode network, or DMN, which plays a role in “mind-wandering,” daydreaming, and abstract thought involved in thinking about the self. Regions of the DMN are highlighted in red in this fMRI scan. Credit: Leigh Hopper, UCLA Newsroom.

Widespread use of this predictive method would give therapists more information when deciding the best route of treatment for their patients. In the study, the researchers advocate for this fMRI computer model as a way to allocate time and resources, and direct cognitive-behavior therapy towards patients who are most likely to have success, versus other types of treatment such as medications, inpatient programs, intensive day programs, or group therapy. It is a move towards personalized medicine.

However, more research needs to be done to further advance this technique. Computers alone are not yet adequate to diagnose psychological disorders or comprehend subjective human experience. Furthermore, fMRIs are extremely expensive, and the money going towards fMRI scans could instead be put towards treatment. There is also a risk that those who the computer does not deem fit for cognitive-behavioral therapy miss out on a treatment opportunity that could actually help. While studies like this one advance scientific understanding of disorders like OCD, clinicians should proceed with caution when incorporating new computer-based evaluations that could be wrong and depersonalize the treatment experience.

Sources:

Reggente, N., Moody, T.D., Morfini, F., Sheen, C., Rissman, J., O’Neill, J., & Feusner, J.D. (2018) Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive-compulsive disorder. PNAS [published online ahead of print]. https://doi.org/10.1073/pnas.1716686115.

Hopper, Leigh. 2018. Brain scan and artificial intelligence could help predict whether OCD will improve with treatment. UCLA Newsroom. Retrieved Feb. 5 from http://newsroom.ucla.edu/releases/brain-scan-AI-help-predict-ocd-improve-treatment.

How Drastic Deforestation Is Causing the Earth’s Surface to Heat up

Deforestation
Source: Flickr

Forest ecosystems are a large carbon sink because of their ability to absorb carbon dioxide from the atmosphere. They play a huge role in the mitigation of climate change, but the impacts of deforestation has cause the Earth’s surface to heat up. Researchers at the European Commission Joint Research Centre published an article in February of 2018 in the journal Nature Connections detailing how recent changes to the vegetation that covers the earth is causing it to heat up. They examined the effects of cutting down vast expanses of evergreen forests for agricultural expansion on energy imbalances that contribute to the rise in local surface temperatures and global warming overall. These actions have alter radiative and non-radiative properties of the surface.

Using satellite data, the researchers analyzed changes in vegetation cover from 2000 to 2015 all over the world and linked them to changes in the surface energy balance. The statistical relationship between maps of vegetation cover and variables detailing surface properties acquired by satellite imaging was then analyzed.

The researchers also examined changes between different types of vegetation, including evergreen broadleaf forests, deciduous broadleaf forest, evergreen needle leaf forests, savannas, shrublands, grasslands, croplands, and wetlands. While deforestation results in overall higher levels of radiation leaving Earth’s surface, the balance between the shortwave light the sun emits and the longwave energy the reflects changes depending on forest type. From their observations, researchers concluded that removing tropical evergreen forest for agricultural expansion is the most responsible for an increase in surface temperature locally.

Altering the vegetation cover changes its surface properties drastically, affecting an increase in the level of heat dissipated by water evaporation and the levels of radiation reflected back into space. Overall, the researchers determined that land use change has made the planet warmer. Clearly, these forest ecosystems play an important role in combating the effects of air pollution, soil erosion, and overall climate change.

Gregory Duveiller, Josh Hooker, Alessandro Cescatti. The mark of vegetation change on Earth’s surface energy balanceNature Communications, 2018; 9 (1) DOI: 10.1038/s41467-017-02810-8

NASA’s NextSTEP into Space? A Real Life Deep Space Station? What is this Star Trek?

Hubble Spies a Loopy Galaxy

Ever wanted to live in Space? Well, that dream might be closer than you think. In 2018, researchers at NASA’s Johnson Space Center released an update paper on the progress of NextSTEP Phase 2. What’s NextSTEP, you ask? It stands for NASA’s Next Space Technologies for Exploration Partnerships program. This program is a public-private partnership that wants to seek commercial development of deep space exploration, such as extensive human spaceflight missions. The first phase of NextSTEP kicked off in 2014, when NASA made the announcement of plans to inhabit the area of space between the earth and the orbit of the moon (cislunar). These plans were created to leverage the commercialization of low earth orbit and will be part of the Deep Space Gate Way. The Deep Space Gateway is a space station planned by NASA for construction in the 2020s (stay tuned to our blog for more information on the Deep Space Gateway).

In 2016, NextSTEP Phase 2 selected five commercial companies to start creating ground prototypes. To ensure that these prototypes can be successful, a test team of NASA engineers has been developing evaluation criteria since 2008. Also known as the ground test protocol, these evaluation criteria are the most important part of Phase 2 of the NextSTEP program. The protocol was created by using both a top-down and bottom-up approach. The top-down approach was based on the exploration goals from the Human Exploration and Operations Mission Directorate (HEOMD), and the flight objectives from the NASA Future Capabilities Team (FCT), Evolvable Mars Campaign (EMC) and the Human Health and Performance (HH&P) teams. The bottom-up approach was written by the same set of organizations but included all of the smaller details of the mission from logistics to avionics, and Mission Control Center operations. After completion, the teams decided that the ground tests will be evaluated using inspection, demonstration, analysis, subsystem standalone testing, and human in the loop (HITL) testing. Finally, the team will recommend the best habitation platform to advance to stage 3!

OPINION: As I understand it, aspects of the Deep Space Gateway are going to be extremely helpful for other missions including travel to Mars and further into the galaxy. The DSG reminds me of Yorktown Station from Star Trek Beyond. However, our Deep Space Gateway will spend more time in Earth’s orbit then floating around in space with Starfleet like the fictional Yorktown. It’s going to be interesting to see just how far we can take this program.

Link: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005906.pdf

Beaton, K. H., Chappell, S. P., Bekdash, O. S., Gernhardt, M. L. 2018. Development of a Ground Test and Analysis Protocol to Support NASA’s NextSTEP Phase 2 Habitation Concepts. NASA Technical Reports Sever: JSC-CN-39874.

Another Incoming Climate Change Victim?

Ocean acidification, arguably climate change’s worst product where CO2 which has been released into the atmosphere is then absorbed by the ocean effectively lowering its pH level, is yet again being proven to negatively affect marine life. This time, a few researchers at the Tjärnö Marine Research Station in Sweden conducted a year and a half long experiment on ocean acidification’s affect on a marine invertebrate known as Balanus improvisus, a type of barnacle known to be sensitive to short term changes in ocean pH levels. The study took reared laboratory bread barnacles as well as field collected assemblages, and held some of each under normal ocean pH levels of 8.1 and  a more acidic level of 7.5. Their results, were sadly quite predictable. 

The acidification not only caused the barnacles mortality rate to heavily increase, but also led to reduced growth and reproduction rates. In fact, barnacles were even paired up with one another so as to increase breeding rates, yet still both the laboratory made and field collected samples held in the more acidic water, failed to produce any fertilized embryos. Though most of the surviving barnacles of the acidic water developed mature gonads ( organs used for reproduction) in the end they all failed to reproduce over the 16 months studied, meaning they were able to acclimate to their new environment, but only partially.

Barnacles
Group of barnacles

The two big aspects to take away here are firstly, that barnacles are ecologically important, economically important, and widely studied ecosystem engineers that if lost would be awful for marine environments and future studies on the health of environments. Secondly, that this study proves once again that climate change, specifically ocean acidification is detrimental to marine life across all aspects.  So much aquatic life is quickly disappearing due to this phenomenon as well as ocean temperature risings, both of which are direct products of global warming. Sadly, these invertebrate are just another example, in a sea of them (pun not intended), of the major issues that are headed our way if we don’t reduce our carbon emissions.

Source

Anil A. C., 2018. Long term exposure to acidification disrupts reproduction in a marine invertebrate. PLoS One V. 13(2): 19-36.

The Perks of Hydro-Powered Dams

Image of dam

Is it possible to have a dam that contributes to the socioeconomic and energy needs of a community without degrading the surrounding environment?

Researchers from Arizona State University found the answer to this question. They wanted to observe how dams would impact the food security among communities around the Mekong River. Many of these communities rely on the river for their food source and employment. Nutritionally, rural fishing and agricultural communities receive animal protein and vitamin A from the river too. From their study, Results indicate that a design flow that mimics long inter-flood interval and short, strong flood pulses produced higher fish yields than from natural flow restoration. Their results are an extension of previous studies that linked the flood magnitude, duration, and a low period followed by short, strong flood pulses leaded to higher yields in fisheries.

Sabo and his co-authors based their study on the rivers in Lower Mekong Basin. The Mekong River is the twelfth largest in the world, estimating 4350 kilometers in length. It is also the eight largest river that discharges and hosts one of the largest inland fisheries in the world. The river goes through China, Myanmar (Burma), Laos, Thailand, Cambodia, Vietnam.

Due to its large presence across transnational boundaries, it has attracted hydro-power development. According to the researchers, hydropower is a common source of energy for poor, predominantly rural populations. Despite its alternative benefits as a renewable energy, the process could have negative impacts on the environment. For instance, hydrologic alteration from dams could lead to invasion of non-native aquatic species, which would impact the food web structure.

To analyze the relationship between food security and dams, the researchers evaluated the discharges on the Tonle Sap River that connects the Mekong River to the Tonle Sap Lake . The Dai fishery is located on this river too. The Dai fishery has a nursery habitat that houses approximately 300 fish species. In addition to the biodiversity, the fishery is the most valuable and productive (i.e. number of fish caught) in the Lower Mekong Basin according to the researchers.

Based on their results, designed flows had a 76% annual increases in yield compared to 47% in annual yield in natural flow restoration along the Tonle Sap and Mekong Rivers.  Designed flows are based on models on flood pulse extent, based on flood magnitude and duration, and net annual anomaly, based on the sum of all positive (wetness) and negative (dryness) anomalies to detail annual discharges. Natural flow is based on the conditions of the water before the installation of dams. Currently, there are projected dams in China, Laos, and Cambodia that would allow water managers to control the flow of the river. This study suggests designed flows prompts higher yields, which would encourage more projects to make dams to insure food security. Below is an image of the proposed dams  by the researchers that support the designed-flow model recommended by them.

Image of Lower Mekong Basin
Proposed Dams in Lower Mekong Basin

Source:

Sabo J.L., Ruhi, A., Holtgrieve, G.W., Elliott, V., Arias, M.E., Bun Ngor, P., Rasanen, T.A., Nam, S. 2017. Designing river flows to improve foo security futures in the Lower Mekong Basin. Science 358: 1053.

Liquid Biopsy, Detecting Cancer DNA Before Tumors

A new blood test is capable of identifying genetic markers for eight major types of cancer. Though it only correctly identified cancer 70% of the time, this so-called “liquid biopsy” is a minimally invasive way to screen for cancer when no symptoms are present. It is at this stage cancer is at its most treatable, and at $500 costs no more than a colonoscopy, mammogram, or other cancer screenings.

 

The importance of such a test cannot be overstated in the fight against cancer. Insidious cancer cells can essentially lie dormant for 20-30 years before they grow into large, spread out masses that are difficult or impossible to eradicate. By identifying the cancer in its nascent stages, it can be usually be readily cured using radiation, surgery, or other common treatments. The difficulty lies in identifying the cancer DNA in patients blood, which is often present in miniscule amounts, and even when identified it can be difficult to trace the tissue of origin.

The eight major cancer types being screened here account for 60%, or 360,000, of all cancer deaths in the US last year, and there is nothing more critical to their effective treatment than an early diagnosis. Though as you can see from the accompanying chart, detectability varies; but this methodology is a work in process with large-scale human trials set to begin soon.

The research comes out of Johns Hopkins University in Baltimore and has been published in the journal Science. As this research begins large-scale human trials it will be evaluated for its utility in hospitals and doctors offices. The hope is that the principles underlying this methodology can be expanded to identify more types of cancer, and with greater accuracy. We may never be able to cure late stage cancer, and the treatments are often ghastly; but if the disease can be identified before it even forms tumors, the cancer can very likely be cured.

 

Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, et. al. (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 359(6378): 926-930

 

Molecular markers identified for autism, schizophrenia, and depression

Some psychological disorders, such as schizophrenia, tend to be highly heritable, meaning that the disorder is often passed down generationally within a family. Schizophrenia, for instance, is 60-87% heritable; if you were to have schizophrenia, there’s a 60-87% chance that one of your immediate relatives will develop symptoms, too. Similarly, major depressive disorder is 30-40% heritable. Therefore, in order to treat these disorders, its necessary to look at the genes involved. A February 2018 study published in Science found that there is significant overlap in gene expression between autism spectrum disorder, schizophrenia, and bipolar disorder, as well as an overlap between schizophrenia, bipolar disorder, and major depression. The strongest relationship was between schizophrenia and autism spectrum disorder.

Consider gene expression as a construction company. A construction company has a stockpile of materials: concrete, glass, cement, wood, nails, etc. The company has a crew of workers, and the crew is capable of building a variety of houses and apartment buildings. The construction company is analogous to the use of DNA by cells in the brain. The DNA is like the stockpile of materials. The materials are required to build anything, but the possible combinations of materials are endless. The RNA transcription mechanism in the cells is like the crew. The crew chooses which materials to use, and determines how much of each item is necessary for the project. In cells, this system is called “gene expression.” Every cell in the brain has the same DNA, or the same starting materials, but each cell has a different construction crew that decides to use the materials slightly differently; some build houses, some build apartment buildings, some build garages.

Instead of examining the DNA, or the building materials in over 700 cadaver brain samples used in the study, the researchers looked at the gene products, or what the construction crews built. It is unknown whether the gene products found in the brains caused the disorder symptoms, or gradually developed throughout life as the consequence of the disorders. But the study provides useful information regarding what proteins and structural factors manifest in disordered brains, and this information can be used to trace back to an origin point. Director of the UCLA Center for Autism Research and Treatment, and author of the study Daniel Geschwind said, “These findings provide a molecular, pathological signature of these disorders, which is a large step forward.”

The scientists found biological markers that tend to distinguish a brain with autism, for example, from the average brain. In the case of autism spectrum disorder, the study reported an increased activation of the CD11 gene, while another gene called CD2 was especially active in the brains suffering from depression. Additionally, the study mapped gene expression commonalities between brains with the same disorder, essentially establishing a molecular blueprint that can be recognized for diagnosis, and treated more effectively at the molecular level.

Sources:

Gandal, M.J., Haney, J.R., Neelroop, N.P., Leppa, V., Ramaswami, G., Hartl, C., Schork, A.J., Appadurai, V., Buil, A., Werge, T.M., Liu, C., White, K.P., CommonMind Consortium, PsychENCODE Consortium, iPSYCH-BOARD Working Group, Horvath, S., & Gerchwind, D.H. 2018. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359: 693–697.

Hopper, Leigh. 2018. Autism, schizophrenia, bipolar disorder share molecular traits, study finds. UCLA Newsroom. Retrieved Feb. 26 from http://newsroom.ucla.edu/releases/autism-schizophrenia-bipolar-disorder-share-molecular-traits-study-finds.

Seidel, D.C., Bulk, C., Stanley, M.A. 2017. Abnormal Psychology: A Scientist-Practitioner Approach (4th Edition). Pearson Education [print].

Could Exercise Reduce the Risk of Lung Cancer?

physical activity

Researchers at Roswell Park Cancer Institute (RPCI) in Buffalo, New York have linked lifetime physical inactivity to increased lung cancer risk and mortality. This was achieved through investigations and statistical data analysis conducted on patients who received medical services at RCPI. The paper, published in January 2018, included results from 660 lung cancer patients and 1335 cancer-free controls.

Lung cancer is the second most diagnosed and deadly cancer in the USA as of 2018. Among the newly diagnosed cases, 90% are associated with cigarette smoking. The researchers at RCPI found it necessary to identify additional behavioral risks, especially for never-smokers. A medical questionnaire was offered to all patients admitted to the institute, regardless of diagnosis, to assess the level of lifetime physical activity. Physical inactivity was defined as less than one session of recreational physical activity per week on average. To survey the effects of inactivity on both lung cancer risk and survival, variables like age, sex, smoking (pack years) and body mass index (BMI) were taken into consideration.

Results showed a direct correlation between inactivity and increased lung cancer among patients in all of these subgroups. A similar trend was observed for the overall population. When inactivity was combined with smoking, there was an even greater risk. In addition, the mortality rate of patients also showed a positive relationship to lifetime inactivity. Analysis of the acquired data using a statistical curve showed a survival disadvantage of 170 days for physically inactive individuals compared to active lung cancer patients.

Physical Inactivity is believed to be responsible for impaired immune function, and DNA repair capacity.

Such biological effects could account for the observed increase in lung cancer risk and mortality. Considering the other end of the spectrum, the role of increased physical activity in decreasing lung cancer risk has received valid biological explanations in previous studies. Physical activity is considered to improve lung function and reduce the duration of exposure to cancer causing agents. It has also been known to increase the forced expiratory volume (FEV – the volume of air expelled during one forced breath) which usually decreases among smokers.

The study gives good statistical results to support its conclusions, however, there are a few shortcomings. Despite the clear indication of inactive, the reference group for active individuals is far too broad and shows no differentiation between people with low, moderate and high activity levels. The effects of unmeasured factors like the possibility of active individuals having healthier eating habits incorporated with fruits and vegetables, which are known to reduce cancer risk has not been taken into consideration. However, it provides an important area for lung cancer research, especially since many self-reported population estimates have suggested that about 50-79% of Americans are insufficiently active.

In the past, targeted exercises for lung cancer patients have shown improvements like reduced sleep disturbance, fatigue, depression, and anxiety levels in addition to a boost in fitness. On the other hand, this study has shown inactivity to be responsible for an increase in the risk of lung cancer and mortality among patients. Further research is of utmost importance. Future studies should consist of randomized trials with higher consideration for other related factors that play indirect roles in skewing the results. If these studies further corroborate the above findings, time, effort and funds need to be put into estimating the amount of physical activity required that can be used as a potential preventive measure against lung cancer.

Reference: Cannioto, R., et. al. 2018. Lifetime physical inactivity is associated with lung cancer risk and mortality. Cancer Treatment and Research Communications 14: 37-45.

Link to image

Ditch the Plastic

A study done in July of 2017 reveals the short life cycle of plastics and our excessive production rates on a global scale. Researchers found that 6.3 million metric tons of plastic waste has been created as of 2015. Of that, only 9% has been recycled and 79% has entered either the landfill or environment. By 2050 the amount of plastic waste to enter the landfill or environment is likely to double. This is alarming because plastic is not biodegradable. However, plastic will break down over hundreds of years into very small pieces. These pieces can contaminate oceans and the natural environment. In fact, somewhere between 4 and 12 million metric tons of plastic entered the ocean in 2010 alone.

The excessive amount of plastics produced globally is used mainly to package goods. The study found that 42% of all non fiber plastics have been used for packaging, primarily composed of PE, PP, and PET. PE, PP, and PET are also known as plastics #2, 5, and 1. Though most plastics can be recycled, they are often not. And even if they are, recycling just delays the amount of time before the plastic ends up in the landfill as waste. As if plastic waste contaminating our lands and oceans isn’t enough, the fossil fuels used to create plastics pollutes our air and contributes to climate change. If we continue to generate as much plastic as we currently do, plastic will account for 20% of all oil production by 2050 (plasticpollutioncoalition.org).

Every year Americans throw away 35 billion plastic bottles (utahrecycles.org), use 380 billion plastic bags (Anderson), and recycle only a small percentage of both. One of the worst daily use plastic items are straws, which 500 million are used a day and often can be found accumulating in oceans (plasticpollutioncoalition.org). This is why society needs to move away from single use items and harmful plastic. The throwaway economy needs to transform into a circular one where goods are reused and re-purposed not used and disposed. To live a sustainable life and reduce the amount of waste generated we can take part in several meaningful actions. These include: using reusable bags when shopping to avoid plastic bag use, investing in a reusable water bottle to save hundreds of plastic bottles from contaminating the environment, not using or buying plastic straws, and purchasing less plastic packaged goods or plastic goods in general. Our everyday actions can make a big difference. Choosing to avoid plastics and encouraging others to do the same, can help bring the mass production of plastics to a halt and save billions of tons of plastic waste from contaminating our environment.

 

Sources: Geyer, R., Jambeck, J.R., and Law, K.L. 2017. Production, use, and fate of all plastics ever made. Science Advances 3: 7.

Marcia Anderson. 2016. Confronting Plastic Pollution One Bag at a Time. 

https://utahrecycles.org/get-the-facts/the-facts-plastic/

Plastic Polution Coalition. 2017. Fueling Plastics: New Research Details Fossil Fuel Role in Plastics Proliferation

Photo Source: Flickr user Emilian Robert Vicol

For Better or Worse Rock Glaciers will Eventually Melt Away

As global climate change continually progresses our glaciers continually recede. However, their decreasing volumes differ from one to another. You may never have heard of them, but rock glaciers (RG’s) are the more resilient, mountainous equivalent to typical glaciers. Researchers in the BEIS/Defra Met Office Hadley Centre Climate Program, conducted research regarding these glaciers and created the first ever RGDB (rock glacier database), in an effort to increase knowledge about them and awareness of the impending hydro-logic impacts they soon may have. They were able to pinpoint over 73,000 of them all over the world, many of which were located in the highest and most arid regions of the world, including the Andes and the Himalayas.

As stated earlier rock glaciers are more resilient to low lying glaciers (in regards to global warming).  RG’s are found in high elevation area’s, mainly mountain tops, all around the world. They have an active layer which melts and thaws seasonally, and are characterized as active or inactive glaciers depending on whether or not they have ice beneath it. This active layer is also what helps regulate the glaciers temperature and causes it to be more resilient to temperature changes. However, they aren’t immune. Global warming is predicted to hit higher elevation areas harder then lower lying elevations. At first this will increase flow of rivers and streams within the watershed, but it won’t last for long. As the temperature increases so will melting and eventually the long term future consequence will be the loss of these glaciers.

Glacier and Snow on Mountain
Mountain glacier and snow in New Zealand

Thankfully, the water supply that will eventually come from the melting of these ‘natural water towers’ isn’t just gonna disappear, it’ll be utilized. The meltwater will create a significant water source for arid and semi-arid systems with potential future water scarcity problems.

Apart from the database made, the researchers also estimated the water content that individual rock glaciers hold. The number came to around 83.72 Gigaton each, give or take about 16Gts. That’s a lot of water, especially if used efficiently.

Finally, whether or not individual rock glaciers melt, people in places affected by them wont see huge droughts anytime in the near future, thanks to their resilience to climate change. The only question left is, what happens when they do finally melt away?

Source

Jones D. B, Harrison S., Anderson K., Betts R. A., February 2018. Mountain rock glaciers contain globally significant water sources. Scientific Reports v10 NO 1038: 28-34.

Putting Too Much Heart into Space Exploration? Cardiovascular Disease and Cancer in Astronauts

The effect of space radiation on astronaut health has always been a concern of NASA and its astronauts. With space flight, there are numerous possible health challenges that can occur, but radiation and its effect on cardiovascular disease and cancer is at the top of NASA’s list. The difficulties and costs of space travel make it hard to measure these effects. In spite of these challenges, in 2018 researchers at The University of Texas, National Cancer Institute, NASA Johnson Space Center, and MEI Technologies conducted an observational cohort study of astronauts and found that there was no over exaggerated risk of cancer or cardiovascular disease due to space radiation. However, these results were not completely conclusive and doubts still remain.

The team selected astronauts from 1959 to 1969 and looked at their medical records from birth to death, or 2016, which ever came first. Their data was collected from the Lifetime Surveillance of Astronaut Health program at the NASA Johnson Space Center. The astronauts that were used in the study participated in the Mercury through Space Shuttle programs.  A diverse population was not possible as all astronauts of the time were white males, and some of the included subjects never even flew a space mission.  In total, there were 73 white males (49 living and 34 deceased) that participated in the study.  The health hazards of smoking were not well known at the time, so this group maintained similar smoking patterns as the general U.S. population.  It would be much more difficult to find a single astronaut that smokes today! NASA carefully measures radiation exposure to its astronauts and the total doses ranged from 0 to 74.1 mGy (milligrays). After comparing with the United States white male population, the overall mortality rates of the astronauts that were used in the test fell well below the national average!

Although the researchers found that space radiation doesn’t lead to risk of cancer or cardiovascular disease, they decided that the findings were not conclusive, only because they used such a small sample. It is also possible that the astronauts in the population had a reduced cardiac risk because they were in better physical condition than the average U.S. white male of the time. The researchers want to look more into this topic by using epidemiology data with cell and animal studies to back up their findings on the risk of space radiation.

Link:  https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009911.pdf

Elgart, S.R., Little, M. P., Campbell, L. J., Milder, C. M., Shavers, M. R., Huff J. L., Patel, Z. S. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration. NASA Technical Reports Sever: JSC-CN-40709.